Exam Quantum Physics 2

Date 18 June 2014
Room K. Duppenhal
Time 8:30 - 11:30
Lecturer D. Boer

- Write your name and student number on every separate sheet of paper
- Raise your hand for more paper
- You are allowed to use the book "Introduction to Quantum Mechanics" by Griffiths
- You are *not* allowed to use print-outs, notes or other books
- The weights of the exercises are given below
- Answers may be given in Dutch
- Illegible handwriting will be graded as incorrect
- Good luck!

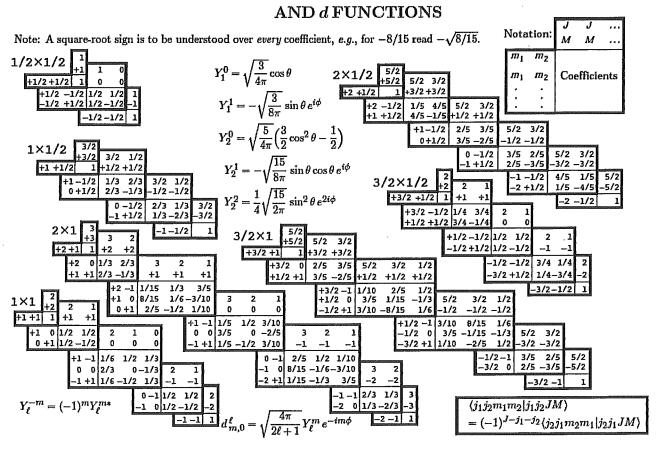
Weighting

Result
$$=\frac{\sum points}{10} + 1$$

Exercise 1

- (a) Explain what are the properties of operators that are constants of motion and how they are used to describe stationary states.
- (b) Use the table below to write down the Clebsch-Gordan decomposition of the state $|l, s; j, m_j\rangle = |1, \frac{1}{2}; \frac{1}{2}, \frac{1}{2}\rangle$ and verify that acting with J_+ on the decomposition gives zero.

34. CLEBSCH-GORDAN COEFFICIENTS, SPHERICAL HARMONICS,



- (c) In the calculation of the strong field Zeeman splitting, one can take into account the relativistic spin-orbit coupling effect as a perturbation. The first-order perturbative correction then involves the calculation of the matrix element $\langle l,s,m_l,m_s|\vec{L}\cdot\vec{S}\,|l,s,m_l,m_s\rangle$. Evaluate this matrix element and explain why one only has to consider such diagonal matrix elements, despite the degeneracy in some of the quantum numbers for the unperturbed system.
- (d) Consider a Hamiltonian H that commutes with the parity or reflection operator P: $x \to -x$. Show that $\langle \psi_a | H | \psi_b \rangle = 0$ whenever ψ_a is an even function of x and ψ_b is an odd function. Explain how this result helps to simplify madegenerate perturbation theory calculations.

Exercise 2

Consider the one-dimensional harmonic oscillator as unperturbed system and introduce the perturbation

 $H'(x) = c\sqrt{b}\exp(-bx^2),$

where b and c are positive constants.

(a) Calculate within perturbation theory the first-order correction to the ground state energy and determine for which values of c the result is valid when $b \gg m\omega/\hbar$.

Consider next the perturbation

$$H'(x) = c x \sqrt{b} \exp(-bx^2),$$

where b and c are positive constants.

- (b) Show that in this case the first-order perturbative correction vanishes.
- (c) Show that the second-order perturbative correction to the ground state energy is negative.
- (d) Demonstrate using the variational principle that adding this perturbation H' can only decrease the energy of the ground state.
- (e) Draw a picture of the potential including the perturbation H' and write down a trial wave function that might be expected to give a better upper bound on the ground state energy than the unperturbed ground state energy (motivate your choice).

Exercise 3

Consider the Hamiltonian $H = H_0 + H'(t)$, where H' is a time-dependent perturbation that is nonzero for $t \ge 0$. Let $\psi_n^{(0)}$ be the orthonormal set of eigenstates of H_0 with energies $E_n^{(0)}$, i.e. $H_0 \psi_n^{(0)} = E_n^{(0)} \psi_n^{(0)}$.

(a) Show that with the following expansion on the states $\psi_n^{(0)}$

$$\psi(t) = \sum_{n} c_n(t) \, \psi_n^{(0)} \, e^{-i E_n^{(0)} t/\hbar},$$

the coefficients satisfy

$$\dot{c}_m(t) = \frac{1}{i\hbar} \sum_n c_n(t) e^{i (E_m^{(0)} - E_n^{(0)})t/\hbar} H'_{mn},$$

where $H'_{mn} = \langle \psi_m^{(0)} | H' | \psi_n^{(0)} \rangle$.

(b) Consider the case where $H'(t) = V(r)\theta(t)$ for a two-level system consisting of states ψ_1 and ψ_2 , such that $\langle \psi_i | V(r) | \psi_j \rangle \neq 0$ for $i \neq j$. Derive, to first nontrivial order in time-dependent perturbation theory, what is the probability to be in state ψ_2 as a function of time if the system is in state ψ_1 for t < 0.

